Engineering Speed Management Countermeasures:
 A Desktop Reference of Potential Effectiveness in Reducing Crashes July 2014

This chart summarizes studies about the effectiveness of engineering countermeasures. Studies where an increase in crashes were reported are also shown since this information is also relevant in selection of countermeasures.

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
Vertical Deflections Within the Roadway												
Speed Hump-rounded, raised area placed across the roadway, typically 12 to 14 feet long	pedestrian	urban	-	100 (2009)	6	-	all	-	-	-48\%	CA	-43% change in average volume
	pedestrian	urban	-	100 (2009)	5	-	all	-	-	3\%	FL	-28% change in average volume
	pedestrian	urban	-	100 (2009)	16	-	all	-	-	-46\%	MD	-32% change in average volume
	pedestrian	urban	-	100 (2009)	20	-	all	-	-	-33\%	NE	volume change unknown
	pedestrian	urban	-	100 (2009)	4	-	all	-	-	-46\%	OH	-29% change in average volume
	pedestrian	urban	-	100 (2009)	5	-	all	-	-	-40\%	OR	-20% change in average volume
Speed Table-a long speed hump typically 22 feet in length with a flat section in the middle and ramps on the ends	pedestrian	urban	residential	6 (2003)	19	2-3 yrs./2-3 yrs.	total	-	-	-38\%	GA	
	pedestrian	urban	residential	6 (2003)	19	2-3 yrs./2-3 yrs.	injury	-	-	-93\%	GA	
	pedestrian	urban	-	100 (2009)	4	-	all	-	-	-64\%	MD	-15% change in average volume
	pedestrian	urban	-	100 (2009)	4	-	all	-	-	-36\%	OR	-20% change in average volume

U.S. Department of Transportation

Federal Highway Administration

Safe Roads for a Safer Future Investment in roaduay sofety suous lives
http://safety.fhwa.dot.gov

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period （before／after）	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
Speed Cushion—raised area that allows most emergency vehicles to straddle the hump	pedestrian	no crash	dies found	speed cus								
Raised Intersection－a raised plateau，with ramps on all approaches，where roads intersect	pedestrian	－	－	69 （2004）	－	－	serious／ minor injury	1.05	\star	－	－	
Horizontal Deflections／Roadway Narrowing												
Choker／Bulb－out－mid－block curb extensions that narrow road by extending the sidewalk or widening the planting strip	pedestrian	no crash studies found for chokers										
Neck Down－intersection curb extensions that narrow a road by extending the width of a sidewalk	pedestrian	no crash studies found for neck－downs										
Chicanes－curb extensions that alternate from one side of the street to the other forming S －shaped curves	pedestrian	no crash studies found for chicanes										
Center Island—raised or painted island along the centerline that narrows travel lanes	pedestrian	－	－	70 （2011）	－	－	all	0.61	$\star \star \star \star$	－	UT	raised median
	pedestrian	－	－	70 （2011）	－	－	fatal／ serious	0.56	大 大 大	－	UT	raised median
	pedestrian	urban	principal arterial	71 （2008）	－	－	all	0.29	$\star \star \star$	－	UT	raised median
	pedestrian	urban	principal arterial	71 （2008）	－	－	angle	0.45	$\star \star \star$	－	UT	raised median
	pedestrian	urban	principal arterial	72 （2010）	－	－	all	0.86	$\star \star \star$	－	NJ	raised median
	pedestrian	urban	principal arterial	69 （2004）	－	－	serious／ minor	0.78	$\star \star \star \star \star$	－	－	raised median
	pedestrian	urban	principal arterial	69 （2004）	－	－	PDO	1.09	$\star \star \star \star \star$	－	－	raised median
	pedestrian	rural	principal arterial	69 （2004）	－	－	serious／ minor	0.88	$\star \star \star \star \star$	－	－	raised median
	pedestrian	rural	principal arterial	69 （2004）	－	－	PDO	0.82	$\star \star \star \star \star$	－	－	raised median
	pedestrian	urban	－	69 （2004）	－	－	fatal／seri－ ous／minor	0.61	$\star \star \star \star$	－	－	raised median
	pedestrian	rural	－	69 （2004）	－	－	PDO	2.28	$\star \star$	－	－	raised median
	pedestrian	rural	－	69 （2004）	－	－	fatal／ serious／ minor	1.94	\star	－	－	raised median

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Center Island—raised or painted island along the centerline that narrows travel lanes	pedestrian	urban/ suburban	principal arterial	73 (2002)	-	-	vehicle/ped	0.61	$\star \star$	-	WA, OR, CA, AZ, UT, KS, TX, MO, Wi, OH, PA, MA, MD, NC, FL	raised median + unmarked crosswalk
	pedestrian	urban/ suburban	principal arterial	73 (2002)	-	-	vehicle/ped	0.54	$\star \star \star$	-	WA, OR, CA, AZ, UT, KS, TX, MO, Wi, OH, PA, MA, MD, NC, FL	raised median + marked crosswalk
	pedestrian	rural	stop-controlled intersection	74 (2008)	-	-	all	0.69	$\star \star$	-	PA, KY, MO	lane narrowing + painted median + rumble strips
	pedestrian	rural	stop-con- trolled intersection	74 (2008)	-	-	fatal/serious/ minor	0.80	$\star \star$	-	PA, KY, MO	lane narrowing + painted median + rumble strips
	pedestrian	rural	stop-controlled intersection	74 (2008)	-	-	angle	0.58	$\star \star$	-	PA, KY, MO	lane narrowing + painted median + rumble strips
	pedestrian	rural	stop-con- trolled intersection	74 (2008)	-	-	rear-end	1.54	* \star	-	PA, KY, MO	lane narrowing + painted median + rumble strips
Reduce Lane Width with Markings-narrowing of the lanes using pavement markings, median, etc.	roadway departure	rural	-	69 (2004)	-	-	injury	1.05	$\star \star \star$	-	-	8 inch edge line
Road Diet-reducing the number of lanes by reallocating roadway space for other uses (e.g. bike lanes, center turn lanes, medians, parking, shoulder lanes, etc.	pedestrian	urban	3-lane	75 (2003)	1	$\begin{aligned} & 20 \text { mon/ } 20 \\ & \text { mon } \end{aligned}$	all	-	-	62\%	MT	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	1	-	all	-	-	-28\%	MN	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	1	$1 \mathrm{yrs}. / 1 \mathrm{yrs}$.	all	-	-	-17\%	CA	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	1	$1 \mathrm{yrs} . / 1 \mathrm{yrs}$.	all	-	-	-17\%	CA	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	1	$2 \mathrm{yrs}. / 2 \mathrm{yrs}$.	all	-	-	-52\%	CA	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	9	$1 \mathrm{yrs}. / 1 \mathrm{yrs}$.	all	-	-	-34\%	WA	4- to 3-lane
	pedestrian	urban	3-lane	75 (2003)	9	$1 \mathrm{yrs}. / 1 \mathrm{yrs}$.	all	-	-	-57\%	IA	4- to 3-lane
	pedestrian	suburban	3-lane	76 (2010)	30 treatment/ 51 control	$17.5 \text { yrs./4.5 yrs. }$	all	0.81	-	-	CA, WA	4- to 3-lane

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Road Diet-reducing the number of lanes by reallocating roadway space for other uses (e.g. bike lanes, center turn lanes, medians, parking, shoulder lanes, etc.	pedestrian	small urban	3-lane	76 (2010)	15 treatment/ 296 control	4.7 yrs./3.5 yrs.	all	0.53	-	-	IA	4- to 3-lane
	pedestrian	urban	3-lane	77 (2007)	-	-	all	0.67	-	-	MN	4- to 3-lane
	pedestrian	urban	3-lane	77 (2007)	-	-	injury	1.00	-	-	MN	4- to 3-lane
	pedestrian	urban	3-lane	77 (2007)	-	-	PDO	0.54	-	-	MN	4- to 3-lane
	pedestrian	urban	3-lane	77 (2007)	-	-	angle	0.76	-	-	MN	4- to 3-lane
	pedestrian	urban	3-lane	78 (2012)	-	-	all	0.95	$\star \star \star$	-	Ml	4- to 3-lane
	pedestrian	urban	3-lane	79 (2006)	15 treatment / 15 control	11 to 21 yrs./ $/$ to 11 yrs .	all	-	-	-25\%	IA	4- to 3-lane
	pedestrian	urban	3-lane minor arterial	80 (2008)	-	-	all	0.71	$\star \star \star \star$	-	-	4- to 3-lane
	pedestrian	urban	3-lane arterial	78 (2012)	-	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	all	0.91	-	-	MI	4- to 3-lane
	pedestrian	urban	3-lane arterial	78 (2012)	-	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	not specified	0.59	-	-	MI	4- to 3-lane
Surface Treatments and Markings												
Transverse Rumble Stripsraised or grooved patterns installed on the roadway travel lane or shoulder pavements perpendicular to the direction of travel	roadway departure	urban/ suburban	local	69 (2004)	-	-	all	0.66	$\star \star \star \star$	-	-	
	roadway departure	urban/ suburban	local	69 (2004)	-	-	serious/ minor	0.64	$\star \star \star \star$	-	-	
	roadway departure	urban/ suburban	local	69 (2004)	-	-	PDO	0.73	$\star \star$	-	-	
	roadway departure	rural	minor arterial at stop control	81 (2010)	-	-	all	1.2	$\star \star \star \star$	-	MN, IA	
	roadway departure	rural	major collector at stop control	81 (2010)	-	-	all	$\begin{gathered} 0.67 \text { to } \\ 1.4 \end{gathered}$	$\star \star \star$	-	MN, IA	
	roadway departure	rural	major collector at stop control	81 (2010)	-	-	fatal/serious/ minor	0.91	$\star \star \star \star$	-	MN, IA	
	roadway departure	rural	major collector at stop control	81 (2010)	-	-	fatal/serious	0.75	$\star \star \star \star$	-	MN, IA	

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Transverse Rumble Strips-raised or grooved patterns installed on the roadway travel lane or shoulder pavements perpendicular to the direction of travel	roadway departure	rural	major collector at stop control	81 (2010)	-	-	PDO	1.20	$\star \star \star \star$	-	MN, IA	
	pedestrian	rural	low-volume	82 (2011)	-	-	all	0.76	$\star \star \star$	-	China	at pedestrian crosswalk
	roadway departure	rural	curve	69 (2004)	-	-	ROR serious/minor	0.94	$\star \star$	-	-	with RPMs
	roadway departure	rural	-	83 (1986)	-	-	all	0.47	$\star \star$	-	KY	with RPMs
	roadway departure	rural	-	83 (1986)	-	-	wet road	0.51	\star	-	KY	with RPMs
	roadway departure	rural	-	83 (1986)	-	-	nighttime	0.36	\star	-	KY	with RPMs
	roadway departure	rural	-	83 (1986)	-	-	all	1.10	\star	-	KY	with RPMs + transverse markings
	roadway departure	rural	-	83 (1986)	-	-	wet road	0.91	*	-	KY	with RPMs + transverse markings
	roadway departure	rural	-	83 (1986)	-	-	nighttime	0.83	\star	-	KY	with RPMs + transverse markings
Transverse Markingspavement markings placed across the lane perpendicular to direction of travel	roadway departure	rural	freeway to freeway connector	36 (2003)	1	$2 \mathrm{yrs}. / 2 \mathrm{yrs}$.	-	-	-	-48\%	WI	converging chevrons
	roadway departure	urban	-	84 (1996)	-	-	all	0.68	$\star \star \star$	-	-	converging chevrons
	roadway departure	no crash studies found for optical speed bars, herringbone, dragon's teeth, or transverse bars										
Pavement Marking Legends- speed limit or other onpavement signing	roadway departure	no crash studies found for any type of pavement marking legends										
In-roadway Warning Lights	roadway departure	rural	interstate (4-lane)	45 (1977)	1	$9 \mathrm{mon} / 9 \mathrm{mon}$	crashes under foggy conditions	-	-	-75\%	VA	
Vertical Delineation												
Vertical Treatments-vertical objects such as post mounted delineators which are placed along the roadway to provide better delineation and/or provide a feeling of friction	roadway departure	rural	curve	85 (2006)	-	-	ROR	-	-	-15\%	OH	post mounted delineator
	roadway departure	rural	-	69 (2004)	-	-	injury	1.04	-	-	-	post mounted delineator
	roadway departure	rural	curve	$\begin{aligned} & 86 \text { (2008); } \\ & 87 \text { (2005) } \end{aligned}$	-	-	total	$\begin{gathered} 0.70 \text { to } \\ 0.80 \\ \hline \end{gathered}$	-	-	-	post mounted delineator
	roadway departure	rural	curve (4-lane)	88 (2009)	4	-	total	-	-	-47\%	Italy	sequential flashing beacons + chevrons + curve warning signs

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Vertical Treatments- vertical objects such as post mounted delineators which are placed along the roadway to provide better delineation and/ or provide a feeling of friction	roadway departure	rural	curve (4-lane)	88 (2009)	4	-	nighttime	-	-	-76\%	Italy	sequential flashing beacons + chevrons + curve warning signs
	roadway departure	rural	curve (4-lane)	88 (2009)	4	-	ROR	-	-	-47\%	Italy	sequential flashing beacons + chevrons + curve warning signs
	roadway departure	rural	curve (4-lane)	88 (2009)	4	-	rainy	-	-	-42\%	Italy	sequential flashing beacons + chevrons + curve warning signs
	roadway departure	rural	curve (4-lane)	88 (2009)	4	-	injury	-	-	-37\%	Italy	sequential flashing beacons + chevrons + curve warning signs
	roadway departure	no crash studies found for reflective post treatment, streaming PMDs										
Landscaping-roadside plantings used to create vertical friction	roadway departure	urban	collector	48 (2000)	1	$31 \mathrm{mon} / 17 \mathrm{mon}$	all	$\begin{gathered} \text { no } \\ \text { change } \end{gathered}$	-	-	-	landscaped median and curbside islands
Gateway Entrance Treatments												
Gateway Treatment-placed at community entrance to remind drivers of changing roadway character	pedestrian	rural	community entrance	89 (2009)	7	3-9 yrs./2-7 yrs.	-	-	-	-2% \& -32\%	CA	3400 to 27500 vpd gateway monument
	pedestrian	no crash studies found for pavement marking gateways or combination of entrance treatments										
Dynamic Signing												
Dynamic Speed Feed-back Signs-displays message for drivers traveling over the threshold speed	roadway departure	rural	$\begin{aligned} & \text { curve } \\ & \text { (2-lane) } \end{aligned}$	59 (2002)	2	-	injury	-	-	$\begin{aligned} & -54 \text { to } \\ & -100 \% \end{aligned}$	United Kingdom	"SLOW DOWN" + curve warning
	roadway departure	rural	interstate	61 (2000)	5	5-yrs./6-mon	all	-	-	-2\%	CA	$\begin{aligned} & \text { "50 MPH CURVES" + } \\ & \text { "YOUR SPEED XX" } \end{aligned}$
	roadway departure	rural	curve (2-lane)	57 (2013)	22	3-yrs./ 2-yrs.	all	$\begin{gathered} 0.93 \text { to } \\ 0.95 \end{gathered}$	-	-	$\begin{gathered} \text { IA, FL, } \\ \text { WA, AZ, } \\ \text { OR, OH, } \\ \text { TX } \end{gathered}$	"YOUR SPEED XX" + curve advisory sign
	roadway departure	rural	curve (2-lane)	57 (2013)	22	3-yrs./ 2-yrs.	single vehicle	0.95	-	-	$\begin{gathered} \text { IA, FL, } \\ \text { WA, AZ, } \\ \text { OR, OH, } \\ \text { TX } \end{gathered}$	"YOUR SPEED XX" + curve advisory sign
	roadway departure	no crash studies found for flashing beacons										

Roundabout-large, raised, circular islands at the middle of major intersections, around which all oncoming vehicles must traverse

Intersection Treatments

intersection	-	-	90 (1994)	181	-	injury	0.35	$\star \star$	-	Netherlands	
intersection	-	-	90 (1994)	181	-	PDO	0.58	$\star \star$	-	Netherlands	
intersection	all	-	90 (1994)	181	-	vehicle/ped	0.27	\star	-	Netherlands	
intersection	all	-	90 (1994)	181	-	vehicle/ped	0.27	\star	-	Netherlands	
intersection	all	urban/ rural	91 (2013)	13	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	fatal/injury	0.47	$\star \star \star \star$	-	WI	low speed roundabout
intersection	all	urban/ rural	91 (2013)	11	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	all	0.66	$\star \star \star \star$	-	WI	high speed roundabout
intersection	all	urban/ rural	91 (2013)	11	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	fatal/injury	0.51	$\star \star \star$	-	WI	high speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	all	0.33	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	injury	0.13	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	fatal/injury	0.11	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	angle	0.17	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	rear-end	0.85	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	injury angle	0.09	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	sideswipe	2.79	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	fixed object	4.66	$\star \star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{aligned} & 98 \text { data yrs./98 } \\ & \text { data yrs. } \end{aligned}$	frontal/ opposing direction/ sideswipe	2.40	$\star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout
intersection	rural	rural	92 (2012)	19	$\begin{gathered} 98 \text { data yrs./98 } \\ \text { data yrs. } \\ 7 \end{gathered}$	rear-end injury	0.54	$\star \star$	-	MD, WA, KS, WI, MN, OR	high-speed roundabout

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Roundabout—large, raised, circular islands at the middle of major intersections, around which all oncoming vehicles must traverse	intersection	all	urban/ rural	91 (2013)	13	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	all	1.10	$\star \star \star \star$	-	WI	low speed roundabout
	intersection	rural	one-way stop	92 (2012)	2	98 data yrs./98 data yrs.	all	0.74	$\star \star \star$	-	OR, KS	3-leg to roundabout
	intersection	rural	one-way stop	92 (2012)	2	98 data yrs./98 data yrs.	injury	0.28	$\star \star \star$	-	OR, KS	3-leg to roundabout
	intersection	all	urban/ rural	91 (2013)	2	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	all	1.24	$\star \star \star$	-	WI	no control/yield to roundabout
	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	all	1.10	$\star \star \star \star$	-	WI	multi-lane roundabout
	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	fatal/injury	0.37	$\star \star \star \star$	-	WI	multi-lane roundabout
	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	all	0.64	$\star \star \star \star$	-	WI	single-lane roundabout
	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	fatal/injury	0.82	$\star \star \star$	-	WI	single-lane roundabout
	intersection	urban	-	93 (2001)	9	$\begin{aligned} & 2 \text { to } 5 \text { yrs./1.3 to } \\ & 5.3 \mathrm{yrs} . \end{aligned}$	all	0.95	$\star \star \star$	-	CO, FL, KS, ME, MD, SC, VT	stop-control to multilane roundabout
	intersection	urban	-	93 (2001)	14	$\begin{aligned} & 2 \text { to } 5 \mathrm{yrs} . / 1.3 \text { to } \\ & 5.3 \mathrm{yrs} . \end{aligned}$	all	0.28	$\star \star \star \star$	-	$\begin{gathered} \mathrm{CO}, \mathrm{FL}, \\ \mathrm{KS}, \mathrm{ME}, \\ \mathrm{MD}, \mathrm{SC}, \\ \mathrm{VT} \end{gathered}$	stop-control to single-lane roundabout
	intersection	urban	-	93 (2001)	14	$\begin{gathered} 2 \text { to } 5 \mathrm{yrs} . / 1.3 \text { to } \\ 5.3 \mathrm{yrs} . \end{gathered}$	injury	0.12	$\star \star \star \star$	-	$\begin{gathered} \mathrm{CO}, \mathrm{FL}, \\ \mathrm{KS}, \mathrm{ME}, \\ \mathrm{MD}, \mathrm{SC}, \\ \text { VT } \end{gathered}$	stop-control to single-lane roundabout
	intersection	urban	-	93 (2001)	14	$\begin{aligned} & 2 \text { to } 5 \mathrm{yrs} . / 1.3 \text { to } \\ & 5.3 \mathrm{yrs} . \end{aligned}$	all	0.42	$\star \star \star \star$	-	CO, FL, KS, ME, MD, SC, VT	stop-control to single-lane roundabout
	intersection	urban	-	93 (2001)	14	$\begin{aligned} & 2 \text { to } 5 \mathrm{yrs} . / 1.3 \text { to } \\ & 5.3 \mathrm{yrs} . \end{aligned}$	injury	0.18	$\star \star \star \star$	-	$\begin{gathered} \mathrm{CO}, \mathrm{FL}, \\ \mathrm{KS}, \mathrm{ME}, \\ \mathrm{MD}, \mathrm{SC}, \\ \mathrm{VT} \end{gathered}$	stop-control to single-lane roundabout
	intersection	all	urban/ rural	91 (2013)	5	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	all	1.11	$\star \star \star \star$	-	WI	all-way stop-control to roundabout
	intersection	all	urban/ rural	91 (2013)	5	$3 \mathrm{yrs} . / 3 \mathrm{yrs}$.	fatal/injury	0.54	$\star \star \star$	-	WI	all-way stop-control to roundabout
	intersection	all	all	94 (2007)	10	3.7 yrs./3.3 yrs.	all	1.03	$\star \star \star$	-	$\begin{aligned} & \text { FL, MS, } \\ & \text { MO, NV, } \\ & \text { OR, WA } \end{aligned}$	all-way stop-control to roundabout
	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	all	0.75	$\star \star \star \star$	-	WI	two-way stop-control to roundabout

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Roundabout—large, raised, circular islands at the middle of major intersections, around which all oncoming vehicles must traverse	intersection	all	urban/ rural	91 (2013)	12	$3 \mathrm{yrs}. / 3 \mathrm{yrs}$.	fatal/injury	0.65	$\star \star \star \star$	-	WI	two-way stop-control to roundabout
	Intersection	all	multi-lane/ single-lane	94 (2007)	36	3.7 yrs./3.3 yrs.	all	0.56	$\star \star \star \star \star$	-	CO, FL, KS, MD, ME, NV, OR, VT, WA, WI	minor stop-control to roundabout
	intersection	all	multi-lane/ single-lane	94 (2007)	36	3.7 yrs./3.3 yrs.	injury	0.18	$\star \star \star \star \star$	-	CO, FL, KS, MD, ME, NV, OR, VT, WA, WI	minor stop-control to roundabout
	intersection	rural	single-lane	94 (2007)	9	3.7 yrs./3.3 yrs.	all	0.29	$\star \star \star \star$	-	KS; MD	minor stop-control to roundabout
	intersection	rural	single-lane	94 (2007)	9	3.7 yrs./3.3 yrs.	injury	0.13	$\star \star \star \star$	-	KS; MD	minor stop-control to roundabout
	intersection	urban	multi-lane/ single-lane	94 (2007)	17	3.7 yrs./3.3 yrs.	all	$\begin{gathered} 0.61 \text { to } \\ 0.88 \end{gathered}$	$\star \star \star \star$	-	$\begin{gathered} \text { FL, KS, } \\ \text { MD, ME, } \\ \text { NV, OR, } \\ \text { VT, WA, } \\ \text { WI } \end{gathered}$	minor stop-control to roundabout
	intersection	urban	multi-lane/ single-lane	94 (2007)	17	3.7 yrs./3.3 yrs.	injury	$\begin{gathered} 0.19 \text { to } \\ 0.22 \end{gathered}$	$\star \star \star \star$	-	$\begin{gathered} \text { FL, KS, } \\ \text { MD, ME, } \\ \text { NV, OR, } \\ \text { VT, WA, } \\ \text { WI } \end{gathered}$	minor stop-control to roundabout
	intersection	suburban	multi-lane/ single-lane	94 (2007)	10	3.7 yrs./3.3 yrs.	all	$\begin{gathered} 0.22 \text { to } \\ 0.81 \\ \hline \end{gathered}$	$\star \star \star \star$	-	$\begin{aligned} & \mathrm{CO}, \mathrm{KS}, \\ & \mathrm{MD}, \mathrm{WA} \\ & \hline \end{aligned}$	minor stop-control to roundabout
	intersection	suburban	multi-lane/ single-lane	94 (2007)	10	3.7 yrs./3.3 yrs.	injury	$\begin{gathered} 0.22 \text { to } \\ 0.29 \end{gathered}$	$\star \star \star \star$	-	$\begin{aligned} & \text { CO, KS, } \\ & \text { MD, WA } \end{aligned}$	minor stop-control to roundabout
	intersection	-	-	95 (2007)	62	$3 \mathrm{yrs}. / 1 \mathrm{yrs}$.	injury	0.56	$\star \star \star \star$	-	Belgium	unsignalized to roundabout
	intersection	-	-	95 (2007)	62	$3 \mathrm{yrs}. / 1 \mathrm{yrs}$.	minor injury	0.54	$\star \star \star \star$	-	Belgium	unsignalized to roundabout
	intersection	-	-	95 (2007)	62	$3 \mathrm{yrs}. / 1 \mathrm{yrs}$.	serious injury	0.80	$\star \star \star \star$	-	Belgium	unsignalized to roundabout
	intersection	urban/ suburban	2-lane urban/suburban	96 (2013)	16	$3.9 \mathrm{yrs}. / 3.1 \mathrm{yrs}$.	all	0.81	$\star \star \star \star$	-	$\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$	signalized to 2-lane roundabout
	intersection	urban/ suburban	2-lane urban/ suburban	96 (2013)	16	3.9 yrs./3.1 yrs.	injury	0.29	$\star \star \star \star$	-	$\begin{gathered} \mathrm{CO}, \mathrm{FL}, \mathrm{IN}, \\ \text { MD, MI, } \\ \mathrm{NY}, \mathrm{NC}, \\ \mathrm{SC}, \mathrm{VT}, \\ \text { WA } \end{gathered}$	signalized to 2-lane roundabout

(cont'd) Roundabout-large

 raised, circular islands at the middle of major intersections, around which all oncoming vehicles must traverse| Focus | | | | | (before/after) | Type | | Star Rating | Reduction | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| intersection | urban/ suburban | 1-lane urban/ suburban | 96 (2013) | 12 | 3.9 yrs./3.1 yrs. | all | 0.74 | $\star \star \star \star$ | - | $\begin{aligned} & \mathrm{CO}, \mathrm{FL}, \mathrm{IN}, \\ & \mathrm{MD}, \mathrm{MI}, \\ & \mathrm{NY}, \mathrm{NC}, \\ & \mathrm{SC}, \mathrm{VT}, \\ & \mathrm{WA} \end{aligned}$ | signalized to singlelane roundabout |
| intersection | all | urban/ rural | 91 (2013) | 5 | $3 \mathrm{yrs} . / 3 \mathrm{yrs}$. | all | 0.96 | $\star \star \star$ | - | WI | signalized to single- or multi-lane roundabout |
| intersection | urban | urban/ rural | 91 (2013) | 5 | $3 \mathrm{yrs} . / 3 \mathrm{yrs}$. | all | 0.65 | $\star \star \star$ | - | WI | signalized to single- or multi-lane roundabout |
| intersection | urban | urban/ rural | 91 (2013) | 5 | $3 \mathrm{yrs} . / 3 \mathrm{yrs}$. | injury | 0.26 | $\star \star \star$ | - | WI | signalized to single- or multi-lane roundabout |
| intersection | urban/ suburban | $\begin{gathered} \text { 2-lane/1- } \\ \text { lane } \end{gathered}$ | 96 (2013) | 28 | $3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$. | injury | 0.45 | $\star \star \star$ | - | $\begin{aligned} & \text { CO, FL, IN, } \\ & \text { MD, MI, } \\ & \text { NY, NC, } \\ & \text { SC, VT, } \\ & \text { WA } \end{aligned}$ | signalized to single- or multi-lane roundabout |
| intersection | all | urban/ rural | 91 (2013) | 5 | $3 \mathrm{yrs} . / 3 \mathrm{yrs}$. | fatal/injury | 0.35 | $\star \star \star$ | - | WI | signalized to single- or multi-lane roundabout |
| intersection | - | - | 95 (2007) | 33 | $3 \mathrm{yrs} . / 1 \mathrm{yrs}$. | injury | 0.68 | $\star \star \star \star$ | - | Belgium | signalized to roundabout |
| intersection | - | - | 95 (2007) | 33 | $3 \mathrm{yrs} . / 1 \mathrm{yrs}$. | major injury | 0.87 | $\star \star \star$ | - | Belgium | signalized to roundabout |
| intersection | - | - | 95 (2007) | 33 | $3 \mathrm{yrs} . / 1 \mathrm{yrs}$. | minor injury | 0.69 | $\star \star \star$ | - | Belgium | signalized to roundabout |
| intersection | all | 2-lane/1lane: (urban/ suburban) | 96 (2013) | 28 | 3.9 yrs./3.1 yrs. | all | 0.52 | $\star \star \star \star$ | - | $\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$ | signalized to roundabout |
| intersection | all | 2-lane/1lane: (urban/ suburban) | 96 (2013) | 28 | $3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$. | injury | 0.22 | $\star \star \star \star$ | - | $\begin{aligned} & \mathrm{CO}, \mathrm{FL}, \mathrm{IN}, \\ & \mathrm{MD}, \mathrm{MI}, \\ & \mathrm{NY}, \mathrm{NC}, \\ & \mathrm{SC}, \mathrm{VT}, \\ & \mathrm{WA} \end{aligned}$ | signalized to roundabout |
| intersection | urban/ suburban | $\begin{aligned} & \text { 2-lane/1- } \\ & \text { lane } \end{aligned}$ | $\begin{aligned} & 96 \text { (2012); } \\ & 94 \text { (2007); } \\ & 97 \text { (2011) } \end{aligned}$ | 13/5/13 | 3.9 yrs./3.1 yrs. | all | $\begin{gathered} 0.99 \text { to } \\ 1.15 \end{gathered}$ | $\star \star \star$ | - | $\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$ | signalized to roundabout |
| intersection | urban | multi-lane/ single-lane | 94 (2007) | 5 | 3.7 yrs./ 3.3 yrs . | injury | 0.40 | $\star \star \star \star$ | - | FL, MD, MI, SC | signalized to roundabout |

Roadwa

Sites
Study Period
Crash
CM

$$
\begin{array}{|}
\hline \\
\hline
\end{array}
$$ (cont'd) Roundabout-large raised, circular islands at the middle of major intersections, around which all oncoming vehicles must traverse

Focus					fter	Type		Star Rating	On		
intersection	urban	2-lane/ 1-lane: (urban)	96 (2013)	13	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	injury	0.45	$\star \star \star \star$	-	CO, FL, IN, MD, MI, NY, NC, SC, VT, WA	signalized to roundabout
intersection	urban	urban	97 (2011)	13	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	fatal/injury	0.44	$\star \star \star \star$	-	CO, FL, IN, MD, MI, NY, NC, SC, VT, WA	signalized to roundabout
intersection	urban/ suburban	2-lane/ 1-lane	$\begin{aligned} & 96 \text { (2012); } \\ & 97 \text { (2011) } \end{aligned}$	28/ 28	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	injury	$\begin{gathered} 0.34 \text { to } \\ 0.37 \end{gathered}$	$\star \star \star \star$	-	$\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$	signalized to roundabout
intersection	urban/ suburban	2-lane/ 1-lane	96 (2012)	28	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	fatal/injury	$\begin{gathered} 0.28 \text { to } \\ 0.45 \end{gathered}$	$\star \star \star \star$	-	$\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$	signalized to roundabout
intersection	suburban	multi-lane/ 2-lane/ 1-lane/ suburban (2-lane: 8, 1-lane: 7)	$\begin{aligned} & 94 \text { (2007); } \\ & 96 \text { (2013); } \\ & 97 \text { (2011) } \end{aligned}$	4/15/15	3.7 yrs / 3.3 yrs .	all	$\begin{gathered} 0.33 \text { to } \\ 0.58 \end{gathered}$	$\star \star \star \star$	-	CO and VT/ CO, FL, IN, MD, MI, NY, NC, SC, VT, WA	signalized to roundabout
intersection	suburban	2-lane/ 1-lane	96 (2013)	15	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	injury	0.26	$\star \star \star \star$	-	CO, FL, IN, MD, MI, NY, NC, SC, VT, WA	signalized to roundabout
intersection	suburban	suburban	97 (2011)	15	$3.9 \mathrm{yrs} . / 3.1 \mathrm{yrs}$.	fatal/injury	0.26	$\star \star \star \star$	-	$\begin{gathered} \text { CO, FL, IN, } \\ \text { MD, MI, } \\ \text { NY, NC, } \\ \text { SC, VT, } \\ \text { WA } \end{gathered}$	signalized to roundabout
intersection	rural	interchange off ramp/on ramp	98 (2012)	1	$30 \mathrm{mon} / 6 \mathrm{mon}$	all	0.63	$\star \star \star$	-	MS	signalized to roundabout
intersection	rural	interchange off ramp/on ramp	98 (2012)	1	$30 \mathrm{mon} / 6 \mathrm{mon}$	injury	0.40	$\star \star \star$	-	MS	signalized to roundabout

roadway departure	rural	principal arterial/ freeways/ expressways	88 (2009)	15	-	all crashes	0.59	$\star \star \star$	-	Italy	with curve warning sign
roadway departure	rural	principal arterial/ freeways/ expressways	88 (2009)	15	-	ROR crashes	0.56	$\star \star \star$	-	Italy	with curve warning sign
roadway departure	rural	2-lane	88 (2009)	15	-	fatal/serious injury/minor injury	1.46	$\star \star \star$	-	Italy	with curve warning sign
roadway departure	rural	2-lane	88 (2009)	15	-	nighttime	0.66	$\star \star \star$	-	Italy	with curve warning sign
roadway departure	rural	principal arterial/ freeways/ express- ways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	all crashes on	$\begin{gathered} 0.63 \text { to } \\ 1.27 \end{gathered}$	$\star \star \star$	-	CA, WA; Italy	
roadway departure	rural	principal arterial/ freeways/ expressways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	ROR crashes	0.9	$\star \star \star$	-	CA, WA; Italy	
roadway departure	rural	on principal arterial/ freeways/ expressways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	property damage	0.83	$\star \star \star$	-	CA, WA; Italy	
roadway departure	rural	principal arterial/ freeways/ express- ways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	fatal and injury crashes	1.46	* $\star \star$	-	CA, WA; Italy	
roadway departure	rural	principal arterial/ freeways/ expressways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	nighttime	1.92	$\star \star \star$	-	CA, WA; Italy	
roadway departure	rural	principal arterial/ freeways/ expressways	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	wet road crashes on	0.41	* *	-	CA, WA; Italy	

Category	Safety Focus	Area	Roadway	Reference	Sites	Study Period (before/after)	Crash Type	CMF	CMF Clearinghouse Star Rating	Crash Reduction	Location	Notes
(cont'd) Chevron Signs-use of standard chevron signing	roadway departure	rural	2-lane	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	all crashes	0.96	$\star \star \star$	-	CA, WA; Italy	
	roadway departure	rural	2-lane	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	head-on/ sideswipe	0.94	$\star \star \star$	-	$\begin{gathered} \text { CA, WA; } \\ \text { Italy } \end{gathered}$	
	roadway departure	rural	2-lane	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	fatal and injury	0.84	$\star \star \star$	-	$\begin{gathered} \text { CA, WA; } \\ \text { Italy } \end{gathered}$	
	roadway departure	rural	2-lane	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	nighttime	0.75	$\star \star \star$	-	CA, WA; Italy	
	roadway departure	rural	2-lane	$\begin{aligned} & 88 \text { (2009); } \\ & 99 \text { (2009) } \end{aligned}$	-	-	nighttime head-on/ sideswipe	0.78	$\star \star \star$	-	CA, WA; Italy	
Access Control												
Closure/Diversions—road closings or diversion of traffic	roadway departure	no crash studies found for half-closure										
	roadway departure	no crash studies found for diagonal diverters										
	roadway departure	no crash studies found for full closure										

References

The crash modification factor warehouse can be accessed at: http://www.cmfclearinghouse.org

1. Ewing, R. 1999. Traffic Calming: State of the Practice. Institute of Transportation Engineers, Washington, DC.
2. ACV. Effectiveness of Traffic Calming Measures in Arlington County. Arlington County, VA. 2005.
3. Marek, J.C. and Walgren, S. "Mid-Block Speed Control: Chicanes and Speed Humps." City of Seattle, WA. 2000. www.seattle.gov/Transportation/ docs/ITErevfin.pdf
4. Ponnaluri, R.V. and P.W. Groce. "Operational Effectiveness of Speed Humps in Traffic Calming." ITE Journal. 2005. pp. 26-30.
5. Smith, D., S. Hallmark, K. Knapp, and G. Thomas. Temporary Speed Hump Impact Evaluation. Center for Transportation Research and Education at lowa State University. July 2002.
6. Bretherton, W.M. "Do Speed Tables Improve Safety." Presented at the 2003 Annual Meeting of the Institute of Transportation Engineers. August 2003, Seattle Washington.
7. Hallmark, S.L, E. Peterson, E. Fitzsimmons, N. Hawkins, J. Resler, and T. Welch. Evaluation of Gateway and Low-Cost Traffic-Calming Treatments for Major Routes in Small Rural Communities, Phase I. Center for Transportation Research and Education, Iowa State University. Ames, Iowa. November 2007. www.intrans.iastate.edu/research/projects/detail/?projectID=-226410767
8. Corkle, J., J.L. Giese, and M.M. Marti. 2001. Investigating the Effectiveness of Traffic Calming Strategies on Driver Behavior, Traffic Flow, and Speed. Minnesota Local Road Research Board, Minnesota Department of Transportation. October 2001.
9. NYCDOT. Downtown Brooklyn Traffic Calming Study. New York City Department of Transportation. 2004.
10. M. William. "Evaluation of Speed Control Measures in Residential Areas." Traffic Engineering, Institute of Transportation Engineers, Washington, DC. March 1977.
11. Molino, J.A., B.J. Katz, M.B. Hermosillo, E.E. Dagnall, and J.F. Kennedy. Simulator Evaluation of Low-Cost Safety Improvements on Rural Two-Lane Undivided Roads: Nighttime Delineation for Curves and Traffic Calming for Small Towns. Science Applications International Corporation. McLean, VA. February 2010.
12. Macbeth, A.G. 1998. "Calming arterials in Toronto." Presented at the 1998 Annual Meeting of the Institute of Transportation Engineers.
13. Kamyab, A., S. Andrle, and D. Kroeger. Methods to Reduce Traffic Speeds at High Pedestrian Areas. Center for Transportation Research and Education. Ames, lowa. March 2002. www.ctre.iastate.edu/research/detail.cfm?projectid=1052946660.
14. Dixon, K., H. Zhu, J. Ogle, J. Brooks, C. Hein, P. Aklluir, and M. Crisler. Determining Effective Roadway Design Treatments for Transitioning from Rural Areas on State Highways. Oregon State University. FHWA-OR-RD-09-02. September 2008.
15. Hallmark, S., S. Knickerbocker, and N. Hawkins. Evaluation of Low Cost Traffic Calming for Rural Communities - Phase II. Center for Transportation Research and Education, lowa State University. September 2013. www.intrans.iastate.edu/research/projects/detail/?projectID=43176957.
16. Berger, W.J. and M. Linauer. "Speed Reduction at City Limits by Using Raised Traffic Islands." Proceedings from the 2nd KFB-Research Conference. Urban Transport systems. Lund, Sweden. 1999.
17. Hughes, W., R. Jagannathan, and F. Goss. Two-Low Cost Safety Concepts for Two-Way Stop-Controlled, Rural Intersections on High-Speed Two-Lane, Two-Way Roadways. Federal Highway Administration. FHWA-HRT-08-063. September 2008.
18. Lum, H.S. "The Use of Road Markings to Narrow Lanes for Controlling Speed in Residential Areas." Institute of Transportation Engineers Journal. June 1984. pp. 50 to 54.
19. VHB. Two Low-Cost Safety Concepts for Two-Way STOP-Controlled, Rural Intersections on High-Speed Two-Lane, Two-Way Roadways. Vanasse Hangen Brustlin, Inc. FHWA-HRT-08-063. Sept. 2008
20. Ray, B., W. Kittelson, J. Knudsen, B. Nevers, P. Ryus, K. Sylvester, I. Potts, D. Harwood, D. Gilmore, D. Torbic, F. Hanscom, J. McGill, and D. Stewart. NCHRP Report 613: Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections. Transportation Research Board, Washington, DC. 2008.
21. Retting, R.A., H.W. McGee, and C.M. Farmer. "Influence of Experimental Pavement Markings on Urban Freeways Exit-Ramp Traffic Speeds." Transportation Research Record. No. 1705. 2000. pp. 116-121.
22. Tsyganov, A.R., R.B. Machemehl, and N.M. Warrenchuk. Safety Impact of Edge Lines or Rural Two-Lane Highways. Center for Transportation Research, University of Texas at Austin. FHWA/Tx-05/-5090-1. September 2005.
23. Knapp, K. and K. Giese. Guidelines for the Conversion of Urban Four-Lane Undivided Roadways to Three-Lane Two-Way Left Turn Lane Facilities. Center for Transportation Research and Education at lowa State University. April 2001.
24. Fitzpatrick, K., M.A. Brewer, and A.H. Parham. Left-Turn and In-Lane Rumble Strip Treatments for Rural Intersections. Texas Transportation Institute. September 2003.
25. Vest, A., N. Stamatiadis, A. Clayton, and J. Pigman. Effect of Warning Signs on Curve Operating Speeds. Kentucky Transportation Center. KTC-05-20/ SPR-259-03-1F. August 2005.
26. Fontaine, M., P. Carlson and G. Hawkins. Evaluation of Traffic Control Devices for Rural High-Speed Maintenance Work Zones: Second Year Activities and Final Recommendations. FHWA/TX-01/1879-2. Texas Transportation Institute. Texas Department of Transportation. 2000.
27. Martindale, A. and C. Urlich. Effectiveness of Transverse Road Markings on Reducing Vehicle Speeds. NZ Transport Agency Research Report 423. October 2010.
28. Dell'Acqua, G. "Reducing Traffic Injuries Resulting from Excess Speed: Low Cost Gateway Treatments in Italy." Journal of the Transportation Research Board. No. 2203. 2011. pp. 94-99.
29. Martinez, A., D.A. Mantaras, and P. Luque. "Reducing Posted Speed and Perceptual Countermeasures to Improve Safety in Road Stretches with a High Concentration of Accidents." Safety Science. Vol. 60. 2013. pp. 160-168.
30. Godley, S.T., T.J. Triggs, and B.N. Fildes. "Speed Reduction Mechanisms of Transverse Lines." Transportation Human Factors. Vol. 2, No. 4. 2000. pp. 297-312.
31. Arnold, E.D. and K.E. Lantz. Evaluation of Best Practices in Traffic Operations and Safety: Phase I: Flashing LED Stop Sign and Optical Speed Bars. Virginia Transportation Research Council. VTRC 07-R34. June 2007.
32. Katz, B.J. Pavement Markings for Speed Reduction. Science Applications International Corporation. McLean, Virginia. December 2004.
33. Latoski, S.P. "Optical Speed Zone for Rural Two-Lane Highways." ITE Journal. March 2009. pp. 30-35.
34. Gates, T.J., X. Qin, and D.A. Noyce. "Effectiveness of Experimental Transverse-Bar Pavement Marking as Speed-Related Treatment on Freeway Curves." Journal of the Transportation Research Board. No. 2056. pp. 95-102.
35. Hunter, M.P., A. Guin, S. Boonsiripant, and M. Rodgers. Evaluation of the Effectiveness of Converging Chevron Pavement Markings. Georgia Department of Transportation. FHWA-GA-10-0713. October 2010.
36. Drakapoulos, A., and G. Vergou. Evaluation of the Converging Chevron Pavement Marking Pattern in One Wisconsin Location. AAA Foundation for Traffic Safety, Washington, DC. July 2003.
37. Voigt, A.P. and S.P. Kuchangi. Evaluation of Chevron Markings on Freeway to Freeway Connector Ramps in Texas. Texas A\&M University System. 2008.
38. ATSSA. Low Cost Local Road Safety Solutions. American Traffic Safety Services Association. Fredericksburg, Virginia. March 2006.
39. Hildebrand, E. D., F. R. Wilson, and J. J. Copeland. "Speed Management Strategies for Rural Temporary Work Zones." Proceedings of the Canadian Multidisciplinary Road Safety Conference XIII. Banff, Alberta: Canadian Association of Road Safety Professionals. 2003.
40. Meyer, Eric. "A New Look at Optical Speed Bars". Institute of Transportation Engineers Journal. November 2001. pp. 44-48.
41. Retting, R.A., and C.M. Farmer. "Use of Pavement Markings to Reduce Excessive Traffic Speeds on Hazardous Curves." Institute of Transportation Engineers Journal. September 1998. pp. 30-36.
42. Chrysler, S.T. and S.D. Schrock. Field Evaluation and Driver Comprehension Studies of Horizontal Signing. FHWA/TX-05/0-4471-2. Texas Transportation Institute. February 2005.
43. Kannel, E.J. and W. Jansen. In-Pavement Pedestrian Flasher Evaluation: Cedar Rapids, lowa. Center for Transportation Research and Education. Iowa State University. 2004.
44. Prevedouros, P. Evaluation of In-pavement Flashing Lights on a Six-lane Arterial Pedestrian Crossing. University of Hawaii at Manoa, Honolulu, HI. 2000.
45. Shepard, F.D. Traffic Evaluation of Pavement Inset Lights for Use during Fog. Virginia Highway and Transportation Research Council. Charlottesville, Virginia. VHTRC 78-R25. December 1977.
46. Re, J.M., H.G. Hawkins, Jr., and S.T. Chrysler. "Assessing Benefits of Chevrons with Full Retroreflective Signposts on Rural Horizontal Curves." Journal of the Transportation Research Board. No. 2149. 2010. pp. 30-36.
47. Hallmark, S.L., N. Hawkins, and O. Smadi. Evaluation of Low-Cost Treatments on Rural Two-Lane Curves. Center for Transportation Research and Education at lowa State University. July 2012. www.intrans.iastate.edu/research/projects/detail/?projectID=-1352703394
48. Buchholz, K., D. Baskett and L. Anderson. "Collector Street Traffic Calming: A Comprehensive Before-After Study." Presented at the 2000 Annual Meeting of the Institute of Transportation Engineers. 2000.
49. DOT. Traffic Calming in Villages on Major Roads. Traffic Advisory Leaflet 1/00. March 2000. Department for Transport. www.ukroads.org/webfiles/ TAL\%201-00\%20Traffic\%20calming\%20in\%20villages\%20on\%20major\%20roads.pdf
50. Ullman, G.L. and E.R. Rose. "Evaluation of Dynamic Speed Display Signs." Journal of the Transportation Research Record. No. 1918. 2005. pp. 92-97.
51. Sandberg, W., T. Schoenecker, K. Sebastian, and D. Soler. "Long-Term Effectiveness of Dynamic Speed Monitoring Displays for Speed Management at Speed Limit Transitions." 2006 Institute of Transportation Engineers Annual Meeting and Exhibit Compendium of Technical Papers.
52. Cruzado, I. and E.T. Donnell. "Evaluating Effectiveness of Dynamic Speed Display Signs in Transition Zones of Two-Lane, Rural Highways in Pennsylvania." Journal of the Transportation Research Board. No. 2122. 2009. pp. 1-8.
53. Chang, K., M. Nolan, and N.L. Nihan. "Radar Speed Signs on Neighborhood Streets: An Effective Traffic Calming Device?" Proceedings of the 2004 Institute of Transportation Engineers Annual Meeting and Exhibit. Lake Buena Vista, FL. August 2004.
54. CBTD. Stationary Radar Sign Program: 2009 Report. 2009. City of Bellevue Transportation Department, Bellevue, Washington.
55. CEC. "Recent Accomplishments." www.ci.englewood.co.us/inside-city-hall/boards-and-commissions/transportation-advisory-committee/recentaccomplishments. City of Englewood, Colorado. Accessed June 2013.
56. Bertini, R.L., C. Monsere, C. Nolan, P. Bosa, and T. Abou El-Seoud. Field Evaluation of the Myrtle Creek Advance Curve Warning System. SPR 352. FHWA-OR-RD-05_13. Portland State University. June 2006.
57. Hallmark, S.L., N. Hawkins, and O. Smadi. Evaluation of Dynamic Speed Feedback Signs on Curves: A National Demonstration Project. Center for Transportation Research and Education at the Institute for Transportation. Iowa State University. April 2013. www.intrans.iastate.edu/research/ projects/detail/?projectID=-1352703394
58. Knapp, K. Knapp and Ferrol Robinson. The Vehicle Speed Impacts of a Dynamic Horizontal Curve Warning Sign on Low-Volume Local Roadways. Minnesota Department of Transportation. May 2012.
59. Winnett, M.A. and A.H. Wheeler. Vehicle Activated Signs-A Large Scale Evaluation. Road Safety Division, Department for Transport. TRL548. 2002.
60. Drakopoulos, S.U. and Georgia Vergou. I-43 Speed Warning Sign Evaluation. Marquette University, Milwaukee, Wisconsin. November 2003.
61. Tribbett, L., P. McGowen, and J. Mounce. An Evaluation of Dynamic Curve Warning Systems in the Sacramento River Canyon. http://www.coe. montana.edu/ce/patm/pubs/files/2000curve.pdf. Western Transportation Institute. April 2000.
62. Pesti, G. and P.T. McCoy. "Long-Term Effectiveness of Speed Monitoring Displays in Work Zones on Rural Interstate Highways." 80th Annual Meeting of the Transportation Research Board. January 2011, Washington, DC.
63. Brewer, M.A., G. Pesti, and W. Schneider IV. "Improving Compliance with Work Zone Speed Limits: Effectiveness of Selected Devices." Journal of the Transportation Research Record. No. 1948. 2006. pp. 67-76.
64. Mattox, J.H., W.A. Sarasua, J.H. Ogle, R.T. Eckenrode, and A. Dunning. "Development and Evaluation of a Speed Activated Sign to Reduce Speeds in Work Zones." Proceedings of the 2007 Annual Meeting of the Transportation Research Board. January 2007.
65. Ulfarsson, G.F., V.N. Shankar, and P. Vu. "The Effect of Variable Message and Speed Limit Signs on Mean Speeds and Speed Deviations." International Journal of Vehicle Information and Communication. Vol. 1. Nos. 1/2. February 2005. pp. 69-87.
66. Ritchie, S. and M. Lenters. "High Speed Approaches at Roundabouts." Presented at the Transportation Research Board National Roundabout Conference. Vail, CO. 2005.
67. Waddell, E. and J. Albertson. "The Domondale Mini: America's First Mini-Roundabout. Presented at the Transportation Research Board National Roundabout Conference." Vail, CO. 2005.
68. Ariniello, A. "Are Roundabouts Good for Business?" Presented at the Transportation Research Board National Roundabout Conference. Vail, Colorado. 2005.
69. Elvik, R. and T. Vaa. Handbook of Road Safety Measures. Elsevier, Oxford, United Kingdom. 2004.
70. Schultz, G., D. Thurgood, A. Olsen, C.S. Reese. "Analyzing Raised Median Safety Impacts Using Bayesian Methods." Presented at the 90th Meeting of the Transportation Research Board, Washington, D.C. 2011.
71. Schultz, G.G., K.T. Braley, and T. Boschert. "Correlating Access Management to Crash Rate, Severity, and Collision Type." TRB 87th Annual Meeting Compendium of Papers CD-ROM. Washington, D.C. 2008.
72. Yanmaz-Tuzel, O. and K. Ozbay. "A Comparative Full Bayesian Before-after Analysis and Application to Urban Road Safety Countermeasures in New Jersey." Accident Analysis and Prevention. Vol. 42, No. 6. 2010. pp. 2099-2107.
73. Zegeer, C. V., R. Stewart, H. Huang, and P. Lagerwey. Safety Effects of Marked Versus Unmarked Crosswalks at Uncontrolled Locations: Executive Summary and Recommended Guidelines. FHWA-RD-01-075. McLean, Va., Federal Highway Administration. 2002.
74. Bared, J., W. Hughes, R. Jagannathan and F. Gross. Two Low Cost Safety Concepts for Two Way Stop Controlled, Rural Intersections on High Speed Two Lane, Two Way Roadways. FHWA-HRT-08-063. Federal Highway Administration, Washington, DC. 2008.
75. Knapp, K.K., K.L. Giese, and W. Lee. "Urban Minor Arterial Four-Lane Undivided to Three-Lane Conversion Feasibility: an Update." Presented at the 2nd Urban Street Symposium, Anaheim, California. July 2003.
76. Persaud, B. and C. Lyon. Evaluation of Lane Reduction "Road Diet" Measures on Crashes. Highway Safety Information System Summary Report. USDOT, FHWA. FHWA-HRT-10-053. 2010.
77. Gates, T. J., D.A. Noyce, V. Talada, and L. Hill, L. "The Safety and Operational Effects of Road Diet Conversion in Minnesota." 2007 TRB 86th Annual Meeting: Compendium of Papers CD-ROM. Washington, D.C. 2007.
78. Lyles, R.W., M.A. Siddiqui, W.C. Taylor, B.Z. Malik, G. Siviy, and T. Haan. Safety and Operational Analysis of 4-lane to 3-lane Conversions (Road Diets) in Michigan. Michigan Department of Transportation Report Num RC-1555. 2012.
79. Pawlovich, M.D., W. Li, A. Carriquiry, and T. Welch. "lowa's Experience with Road Diet Measures: Use of Bayesian Approach to Assess Impacts on Crash Frequencies and Crash Rates." Journal of the Transportation Research Board. No. 1953. 2006. pp. 163-171.
80. Harkey, D.L., R. Srinivasan, J. Baek, B. Persaud, C. Lyon, F.M. Council, K. Eccles, N. Lefler, F. Gross, E. Hauer, and J. Bonneson. Crash Reduction Factors for Traffic Engineering and ITS Improvements. NCHRP Project 17-25 Final Report. National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C. 2008.
81. Srinivasan, R., J. Baek, and F. Council. "Safety Evaluation of Transverse Rumble Strips on Approaches to Stop-Controlled Intersections in Rural Areas." Presented at the 89th Annual Meeting of the Transportation Research Board, Washington, D.C. 2010.
82. Liu, P., J. Huang, W. Wang, and C. Xu. "Effects of Transverse Rumble Strips on Safety of Pedestrian Crosswalks on Rural Low-Volume Roads in China." Presented at the 90th Meeting of the Transportation Research Board. Washington, D.C. 2011.
83. Agent, K. R. and F.T. Creasey. Delineation of Horizontal Curves. UKTRP-86-4. Frankfort, Ky., Kentucky Transportation Cabinet. 1986.
84. Griffin, L. I. and R.N. Reinhardt. A Review of Two Innovative Pavement Patterns that Have Been Developed to Reduce Traffic Speeds and Crashes. AAA Foundation for Traffic Safety, Washington, D.C. 1996.
85. McGee, H.W. and F.R. Hanscom. Low-Cost Treatments for Horizontal Curve Safety. U.S. Department of Transportation. Federal Highway Administration. FHWA-SA-07-002. December 2006. http://safety.fhwa.dot.gov/roadway_dept/horicurves/fhwasa07002/index.cfm\#toc
86. US DOT. Toolbox of Countermeasures and Their Potential Effectiveness for Roadway Departure Crashes. U.S. Department of Transportation, Federal Highway Administration. FHWA-SA-07-013. August 2008.
87. Gan, A., J. Shen, and A. Rodriguez. Update of Florida Crash Reduction Factors and Countermeasures to Improve the Development of District Safety Improvement Projects. Florida Department of Transportation. 2005.
88. Montella, Alfonso. "Safety Evaluation of Curve Delineation Improvements Empirical Bayes Observational Before-and-After Study."Transportation Research Record: Journal of the Transportation Research Board. No. 2103. Transportation Research Board of the National Academies, Washington, DC. 2009. pp. 69-79.
89. Veneziano, David, Zhirui Ye, Jim Fletcher, Jon Ebeling, and Frederica Shockley. Evaluation of the Gateway Monuments Demonstration: Safety, Economic and Social Impact Analysis. State of California, Department of Transportation, Landscape Architecture Program, and Division of Research and Innovation. September 2009. www.dot.ca.gov/hq/LandArch/research/docs/final_gateway_monument_eval.pdf. Accessed July 2013.
90. Schoon, C. and J. van Minnen. "The Safety of Roundabouts in the Netherlands." Traffic Engineering \& Control. Vol. 35, No. 3. 1994. pp. 142-148.
91. Qin, X., A. Bill, M. Chitturi, and D. Noyce. "Evaluation of Roundabout Safety." Presented at the Transportation Research Board 92nd Annual Meeting. January 2013. Washington, DC.
92. Isebrands, H. "A Statistical Analysis and Development of a Crash Prediction Model for Roundabouts on High-Speed Rural Roadways." Presented at the 91st Annual Meeting of the Transportation Research Board Paper No. 12-4191, Washington, D.C. 2012.
93. Persaud, B. N., R.A. Retting, P.E. Garder, and D. Lord. "Observational Before-After Study of the Safety Effect of U.S. Roundabout Conversions Using the Empirical Bayes Method." Journal of the Transportation Research Record. No. 1751. Washington, D.C., Transportation Research Board, National Research Council. 2001.
94. Rodegerdts, L. A., M. Blogg, E. Wemple, E. Myers, M. Kyte, K. Dixon, G. List, A. Flannery, A., R. Troutbeck, W. Brilon, N. Wu, B. Persaud, C. Lyon, D. Harkey, and D. Carter. NCHRP Report 572: Applying Roundabouts in the United States. Washington, D.C. Transportation Research Board, National Research Council. 2007.
95. De Brabander, B. and L. Vereeck. "Safety Effects of Roundabouts in Flanders: Signal Type, Speed Limits, and Vulnerable Road Users." Accident Analysis and Prevention. Vol. 39. 2007.
96. Gross, F., C. Lyon, B. Persaud, and R. Srinivasan. "Safety Effectiveness of Converting Signalized Intersections to Roundabouts." Accident Analysis and Prevention. Vol. 50. pp. 234-41. July 2013.
97. Srinivasan, R., J. Baek, S. Smith, C. Sundstrom, D. Carter, C. Lyon, B. Persaud, F. Gross, K. Eccles, A. Hamidi, and N. Lefler. NCHRP Report 705: Evaluation of Safety Strategies at Signalized Intersections. Washington, D.C., Transportation Research Board, National Research Council. 2011.
98. Uddin, W., J. Headrick, and J.S. Sullivan. "Performance Evaluation of Roundabouts for Traffic Flow Improvements and Crash Reductions at a Highway Interchange in Oxford, MS." Presented at the Transportation Research Board 91 st Annual Meeting Compendium of Papers, Washington, D.C., 2012.
99. Srinivasan, R., J. Baek, D. Carter, B. Persaud, C. Lyon, K. Eccles, F. Gross, and N. Lefler. Safety Evaluation of Improved Curve Delineation. FHWA-HRT-09-045. Federal Highway Administration, Washington, D.C. 2009.
100. ITE. Traffic Calming State of the Practice. Institute of Transportation Engineers. August 1999.

Abbreviations

common state destinations are used and are not listed here (e.g. lowa $=\mathrm{IA}$) advisory (adv) intersection (isect) month (mon.) pedestrian (ped)
post mounted delineator (PMD)
rumble strips (RS)
run off road (ROR)
years (yrs.)

